Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 745: 141010, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32738689

RESUMO

The rate of urea hydrolysis in nonwater urinals is influenced by the volume of urination events and the frequency of urinal use. Inhibition of urea hydrolysis with acetic acid addition has been demonstrated at the laboratory scale but it was not able to fully represent the conditions of a real restroom with real urine collection. The goal of this study was to understand the effects of acid addition for control of urea hydrolysis on nutrient concentrations and bacterial communities in human urine during collection and storage. Three control logics were used to determine the schedule of acid addition: (i) acid addition after every urination event, (ii) acid addition during periods of high building occupancy, and (iii) acid addition during periods of low building occupancy. Wifi logins were used to approximate building occupancy and to create the control logics used in the study. All three control logics were able to inhibit urea hydrolysis. The bacterial communities were identified to determine the impact of acid addition on the community structure. The collection of urine by nonwater urinals alone did not reduce the presence of enteric bacteria commonly found when collecting urine with urine-diverting toilets. Acid addition reduced the community diversity and created conditions for higher relative abundances of the order Enterobacteriales. Finally, results from stored acidified urine showed that urea hydrolysis inhibition is reversible and is influenced by the amount of acid added at the urinal. The amount of acid added can influence the rate of hydrolysis in the storage tanks and can be used to select for urea- or ammonia-nitrogen for nutrient recovery. This study is the first of its kind to inhibit urea hydrolysis in nonwater urinals in a real restroom with real urine, and is the first to identify the bacterial communities in urine collected solely with nonwater urinals.


Assuntos
Ácido Acético , Nitrogênio , Humanos , Hidrólise , Ureia , Urina , Coleta de Urina
2.
Acc Chem Res ; 52(4): 886-895, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30908003

RESUMO

Urine diversion (i.e., urine source separation) has been proposed as a more sustainable solution for water conversation, nutrient removal and recovery, and pharmaceutical sequestration. As wastewater regulations become more stringent, wastewater treatment plants reach capacity, and water resources become more strained, the benefits of urine diversion become more appealing. By using nonwater urinals and urine-diverting toilets, urine diversion systems seek to collect undiluted human urine for nutrient recovery and pharmaceutical sequestration. Urine is a unique, nutrient-rich waste stream that constitutes an overall low volume of waste entering a wastewater treatment plant. If urine is separated at the building-scale, various technologies can be used to recover nutrients and sequester pharmaceuticals at their most concentrated location. However, the implementation of urine diversion requires a paradigm shift from conventional comingling of wastewater and centralized treatment to source separation and decentralized treatment. This Account proposes a vision for building-scale implementation of urine diversion with the goal of clarifying the opportunities and challenges in this context. The main components of urine, i.e., nitrogen, phosphorus, potassium, and pharmaceuticals, are major drivers for technology development and system implementation. Stepping back, the benefits from water conservation and effects on wastewater treatment are an extension of the system boundary that can impact the sustainability of adjacent systems. However, major challenges have been identified in the literature as hurdles for widespread implementation of urine diversion. Challenges include the comparison of recovering nutrients at the wastewater plant versus at the source, the collection and storage of urine, the ability to recover nutrients and sequester pharmaceuticals, and the overall environmental and economic impacts of urine diversion systems. While these challenges exist, studies have been conducted to address some of the underlying research questions. As more research is conducted, the vision of a seamless urine diversion system with building-wide plumbing and storage comes closer to reality. As such, the application of urine diversion systems will benefit from technology development and research to fill gaps that have been identified. It is important to classify urine diversion systems as a process and not a product. This has implications for the way these systems are evaluated, as their impact on peripheral systems can be of benefit to different stakeholders. In the same light, new research areas, such as cyber-physical systems, reverse logistics, and sustainability transitions, can be applied to urine diversion as approaches for ensuring a robust process for widespread implementation. However, established technologies should be constantly reassessed and enhanced by newer techniques. For example, membrane distillation, eutectic freeze concentration, and solar evaporation should be considered for nutrient recovery and volume reduction because they offer benefits over conventional technologies. Finally, the human behavior component of urine diversion cannot be ignored, as negative user acceptance and improper maintenance of these systems can have a detrimental impact on their future implementation.


Assuntos
Urina/química , Purificação da Água/métodos , Humanos , Hidrólise , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação , Águas Residuárias/química
3.
Environ Sci Technol ; 53(6): 3187-3197, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30793897

RESUMO

This research used a cyber-physical system (CPS) to monitor and control the extent of urea hydrolysis in nonwater urinals. Real-time pH and conductivity data were used to control urea hydrolysis inhibition under realistic restroom conditions with acetic acid addition. Variable urination frequencies and urination volumes were used to compare three conditions that affect the progression of urea hydrolysis. Mechanistic and conceptual models were created to evaluate the factors that influence the progression of urea hydrolysis in nonwater urinals. It was found that low urination volumes at low frequencies created ideal conditions for urea hydrolysis to progress. Alternatively, high urination volumes at high frequencies created pseudo-inhibitory conditions because it did not allow for sufficient reaction time or mixing with older urine in the urinal trap. The CPS was used to control urea hydrolysis inhibition by two logics: (1) reactively responding to a pH threshold and (2) predictively responding to past measurements using four lasso regression models. Results from the control logic experiments showed that acid was added once per hour under low use conditions and once in a 4 h experiment for high use conditions. The CPS allowed for full control of urine chemistry in the nonwater urinal, reducing the conditions (i.e., clogging and malodor) that have led to the removal of nonwater urinals in the United States.


Assuntos
Aparelho Sanitário , Hidrólise , Modelos Teóricos , Banheiros , Ureia
4.
Environ Sci Technol ; 51(23): 13850-13858, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29095605

RESUMO

Nonwater urinals are critical in the implementation of building-scale water conservation and urine diversion systems. However, because of the composition of urine and the prevalence of the urease enzyme that hydrolyzes urea, minerals readily precipitate in nonwater urinals and pipes. This leads to clogging, malodor, and possible replacement of nonwater urinals with flush urinals. Accordingly, the goal of this research was to provide an improved understanding of the urea hydrolysis process in nonwater urinals to benefit water conservation and phosphate recovery efforts. Acetic acid addition was used in nonwater urinals to inhibit the urea hydrolysis reaction by lowering the pH, thereby making the precipitation of calcium- and magnesium-containing minerals less favorable. Of the acids tested, 2.5 mL of 2500 mequiv/L acetic acid added after every urination event was able to inhibit urea hydrolysis in synthetic urine and real urine as indicated by the pH and conductivity of the effluent urine. Acid addition also allowed for 43% more phosphate recovery via struvite precipitation in the acetic acid addition synthetic urine than the synthetic urine with no acid addition.


Assuntos
Aparelho Sanitário , Ureia , Hidrólise , Compostos de Magnésio , Fosfatos , Estruvita , Urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...